2017考研数学:一元函数微分复习指导

发布时间:2016-05-15 11:05 分类:初试经验

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

 

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

  

3.了解高阶导数的概念,会求简单函数的高阶导数。

 

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

  

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。

  

6.掌握用洛必达法则求未定式极限的方法。

  

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

  

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

  

9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。

 

数学是考研最重要的学科,而且这一科目需要掌握的内容多,考核的方向也相对固定,因此各位2017备战考研的同学尽早准备总是没错的。

 

 

成功学员

Successful students
  • 王庆杰中国人民大学
  • 何娟南京大学
  • 吴文聪中国政法大学
  • 李佑哲中央音乐学院
  • 王振清华大学
  • 伍厚至清华大学